Understanding the mechanism of metaphylaxis from an epidemiologic perspective

Brian Vander Ley, DVM, PhD, DACVPM
University of Nebraska-Lincoln, School of Veterinary and Biomedical Sciences, Great Plains Veterinary Educational Center
P.O. Box 148, Clay Center, NE 68933
Bvanderley2@unl.edu

Abstract

Metaphylaxis has become an integral component of BRD control in high risk cattle in North America. It has proven to be both effective and economically advantageous in clinical trials and in field application. The efficacy of metaphylaxis against BRD not only lies in its ability to treat cases in progress at the time of administration, but also in that metaphylaxis modifies epidemic parameters that ultimately reduce the size and severity of disease outbreaks in groups of cattle. One possible explanation for this effect is that metaphylaxis temporarily creates a uniform shift the susceptibility of treated cattle that delays clinical disease while allowing stress to dissipate and adaptive immunity against BRD pathogens to develop. This shift and the changes that occur while it is in effect starve the epidemic of new susceptible cases which reduces BRD morbidity in the population. Provided this theory is accurate, metaphylaxis could be better targeted by using diagnostics to identify and treat only susceptible cattle rather than all of them; however, current technology prevents timely application of such information.

Keywords: bovine respiratory disease metaphylaxis epidemiology
Introduction

Metaphylaxis has become an integral component of bovine respiratory disease (BRD) management in North American beef production systems (NAHMS Feedlot 2011). Clinical trials have consistently associated both health and economic advantages with metaphylactic antibiotic use in cattle of various BRD risk categories and especially in cattle considered at high risk of developing BRD.\(^1,2\) The efficacy of metaphylaxis is mechanistically rooted in the deleterious effect of antibiotics on pathogenic bacterial populations; however, the consistently positive outcomes of metaphylaxis are also likely to come from changes made in the dynamics of BRD epidemics. One possible explanation and the working hypothesis of these proceedings is that metaphylaxis causes a uniform, temporary reduction in susceptibility while alleviation of stress and development of acquired immunity progress. The objective of these proceedings is to discuss this hypothesis and assess its validity.

Characteristics of an Epidemic

The circumstances that set the stage for disease epidemics are well-described. For any particular infectious disease, populations contain individuals that are in one of three categories: susceptible, infected/infectious, and resolved/recovered.\(^3\) The relative proportions individuals in each of these categories define the epidemic potential in a population. The rate at which individuals move from the susceptible category to the infected/infectious category is quantified by the reproductive ratio of the disease and depends on the infectiousness of the pathogen, the degree of effective contact needed for transmission, the duration of infection, and the presence of new susceptible hosts. In theory, a highly infectious pathogen that invades a dense population of susceptible hosts and causes a relatively long period of infection (pathogen shedding) will result
in a dramatic epidemic of disease. In cases were infectivity is reduced, contact is interrupted, or few susceptible hosts are present, epidemics usually progress more slowly and last longer.

Features Bovine Respiratory Disease Epidemics

Many viruses and bacteria have been isolated from cases of bovine respiratory disease. Many of the same bacteria associated with fatal BRD cases can be routinely isolated from the nasopharynx of health cattle. Stress is thought to be necessary component in the pathogenesis of BRD epidemics in groups of cattle. Factors such as abrupt weaning, castration, transport, commingling, environmental change, nutritional changes, and weather events have been implicated as important stressors contributing to the development of BRD.

Cattle at high risk of developing BRD are categorized at that risk level because they have experienced many of the stressors that drive BRD and they are typically naïve to many or all of the BRD pathogens. Enough individuals in accumulated groups are infected with these pathogens to initiate BRD epidemics as transmission from one individual to another or from the nasopharynx to the lungs begins to occur. This transmission is thought to be facilitated by commingling and close contact associated with transport.

The Role of Metaphylaxis in BRD Epidemics

The use of metaphylaxis appears to have a greater role than simply treating cases of BRD that are already in progress when the metaphylactic treatment is applied. In other words, the epidemic is not simply delayed, but a reduction in overall BRD morbidity is observed. One explanation for this reduction is that metaphylaxis changes the dynamics of the epidemic in its early stages. Assuming that the pathogenic bacteria present in the population are sensitive to the chosen metaphylactic drug, treatment of the entire population simultaneously would temporarily
shift the population from susceptible or infected to resolved. This temporary resolution lasts as long as the antibiotic is present at therapeutic levels and as long as the bacteria remain sensitive. While the early stages of an outbreak are temporarily contained by the presence of the metaphylactic antibiotic, calves begin to dissipate stress accumulated during marketing and begin building immunity to recently acquired pathogens. By the time metaphylaxis wanes, some calves have developed enough immunity to remain clinically healthy and avoid a return to susceptible/infected status. Other calves, due to ongoing stress or overwhelming challenge, return to susceptible status and develop clinical disease requiring further treatment.

If this theory has merit, metaphylaxis functions epidemiologically as a modifier of the disease reproduction factor (R_0) by forcing a temporary change in the susceptible population while allowing continued progress toward permanent shifts of susceptible cattle to the resolved category. An epidemic can be thought of as a fire. Early on, a fire starts small and has relatively little impact, but in the presence of an ample supply of fuel the fire will quickly burn out of control. The epidemiologic function of metaphylaxis is comparable to suppressing the fire long enough to provide time to remove most of the fuel. The initial protection from mass treatment does not extinguish the epidemic, but rather arrests it temporarily while the cattle adapt to their new environment and begin to build adaptive immune responses to their newly acquired complement of infections. As calves develop adequate immunity to prevent clinical disease in the absence of antibiotic, they are removed from the supply of “fuel” for the BRD epidemic “fire.” Since the R_0 is dependent on the number of susceptible individuals in a population, a reduction in susceptible individuals will reduce the rate of accumulation of new cases, thereby slowing and eventually stopping the epidemic as it runs out of fuel. This mechanism may explain
part of why BRD morbidity is reduced in metaphylactically treated groups of cattle rather than
simply having the outbreak delayed by the duration of the antibiotic used.

If this theory is driving the decrease in BRD morbidity, some assumptions would have to
be valid. First, calves would have to be assumed to already be incubating pathogens, and in
particular, pathogenic bacteria. If metaphylaxis were applied prior to acquisition of the
pathogenic bacteria, infection would likely be prevented in many individuals and those animals
would return to a fully susceptible state following loss of therapeutic antibiotic levels. Second, to
achieve the most robust effect, all susceptible individuals in a population would need to be
treated. If this assumption were not true, continued susceptibility heterogeneity in the population
of cattle would allow the epidemic to grow in the cattle not protected by antibiotics and allow
amplification of pathogenic load in the population that would have the potential to overcome
relatively immature acquired immunity in the protected calves. This set of circumstances may
allow a BRD epidemic to progress relatively unchecked in a population. Third, the population is
assumed to be stable. If individuals continue to flow in and out of a population, the epidemic will
be fueled by the arrival of new susceptible individuals and the loss of resolved, immune
individuals that effectively serve as fire breaks for remaining susceptible individuals.

The role of diagnostics in metaphylaxis

The use of diagnostics related to BRD-targeted antibiotic use remains limited. Decision
making related to antibiotic application, including choice of antibiotics, timing, and selection of
individuals or groups to treat typically must be completed at a pace incompatible with the speed
of current diagnostic modalities. As a result, discussion of diagnostic use in BRD centers around
what tools would be useful in enhancing the efficacy and value of antibiotic use. This is
particularly true for metaphylaxis as the decision to use metaphylactic antibiotics is made and
executed very shortly after the arrival of newly purchased cattle. Diagnostics could help enhance
the value of metaphylaxis by matching antibiotics to the existing complement of bacteria existing in
a population based on spectrum and antibiotic resistance. Diagnostics could also help
characterize the BRD risk of both populations and individuals within those populations.

Conclusions and Clinical Relevance

The theory of the epidemiologic function of metaphylaxis essentially positions it as a
biocontainment tool. As the circumstances related to antibiotic use continue to change,
particularly in the areas of social acceptance and regulation, more pressure is likely to be placed
on strategies that limit antibiotic use to avoid development of resistance. If metaphylaxis is
indeed a biocontainment tool that modifies epidemic dynamics, improved use of metaphylaxis
can be achieved by thoroughly understanding the mechanisms by which these modifications
occur. Further, if tools to target metaphylaxis to the susceptible animals at the speed of current
production can be developed, little loss in efficacy and a reduction in total antibiotic use can be
expected. In the event that metaphylaxis is no longer allowed in cattle production, understanding
BRD epidemics may offer other techniques that can be used to elicit similar outcomes without
the need for antibiotics.

Acknowledgements

I would like to thank Dr. John Groves for the many hours of discussions that helped
shape the ideas presented in these proceedings.

References

